4 research outputs found

    Toward Data-Driven Digital Therapeutics Analytics: Literature Review and Research Directions

    Full text link
    With the advent of Digital Therapeutics (DTx), the development of software as a medical device (SaMD) for mobile and wearable devices has gained significant attention in recent years. Existing DTx evaluations, such as randomized clinical trials, mostly focus on verifying the effectiveness of DTx products. To acquire a deeper understanding of DTx engagement and behavioral adherence, beyond efficacy, a large amount of contextual and interaction data from mobile and wearable devices during field deployment would be required for analysis. In this work, the overall flow of the data-driven DTx analytics is reviewed to help researchers and practitioners to explore DTx datasets, to investigate contextual patterns associated with DTx usage, and to establish the (causal) relationship of DTx engagement and behavioral adherence. This review of the key components of data-driven analytics provides novel research directions in the analysis of mobile sensor and interaction datasets, which helps to iteratively improve the receptivity of existing DTx.Comment: This paper has been accepted by the IEEE/CAA Journal of Automatica Sinic

    Understanding smartphone usage in college classrooms: a long-term measurement study

    No full text
    Smartphone usage is widespread in college classrooms, but there is a lack of measurement studies. We conducted a 14-week measurement study in the wild with 84 first-year college students in Korea. We developed a data collection and processing tool for usage logging, mobility tracking, class evaluation, and class attendance detection. Using this dataset, we quantify students' smartphone usage patterns in the classrooms, ranging from simple use duration and frequency to temporal rhythms and interaction patterns. Furthermore, we identify the key predictors of students’ in-class smartphone use and their semester grades. Our results reveal that students use their phones for more than 25% of effective class duration, and phone distractions occur every 3–4 min for over a minute in duration. The key predictors of in-class smartphone use are daily usage habits and class characteristics, and in-class phone usage is negatively correlated with student grades

    Trends in Smart Helmets With Multimodal Sensing for Health and Safety: Scoping Review

    No full text
    BackgroundAs a form of the Internet of Things (IoT)–gateways, a smart helmet is one of the core devices that offers distinct functionalities. The development of smart helmets connected to IoT infrastructure helps promote connected health and safety in various fields. In this regard, we present a comprehensive analysis of smart helmet technology and its main characteristics and applications for health and safety. ObjectiveThis paper reviews the trends in smart helmet technology and provides an overview of the current and future potential deployments of such technology, the development of smart helmets for continuous monitoring of the health status of users, and the surrounding environmental conditions. The research questions were as follows: What are the main purposes and domains of smart helmets for health and safety? How have researchers realized key features and with what types of sensors? MethodsWe selected studies cited in electronic databases such as Google Scholar, Web of Science, ScienceDirect, and EBSCO on smart helmets through a keyword search from January 2010 to December 2021. In total, 1268 papers were identified (Web of Science: 87/1268, 6.86%; EBSCO: 149/1268, 11.75%; ScienceDirect: 248/1268, 19.55%; and Google Scholar: 784/1268, 61.82%), and the number of final studies included after PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) study selection was 57. We also performed a self-assessment of the reviewed articles to determine the quality of the paper. The scoring was based on five criteria: test environment, prototype quality, feasibility test, sensor calibration, and versatility. ResultsSmart helmet research has been considered in industry, sports, first responder, and health tracking scenarios for health and safety purposes. Among 57 studies, most studies with prototype development were industrial applications (18/57, 32%), and the 2 most frequent studies including simulation were industry (23/57, 40%) and sports (23/57, 40%) applications. From our assessment-scoring result, studies tended to focus on sensor calibration results (2.3 out of 3), while the lowest part was a feasibility test (1.6 out of 3). Further classification of the purpose of smart helmets yielded 4 major categories, including activity, physiological and environmental (hazard) risk sensing, as well as risk event alerting. ConclusionsA summary of existing smart helmet systems is presented with a review of the sensor features used in the prototyping demonstrations. Overall, we aimed to explore new possibilities by examining the latest research, sensor technologies, and application platform perspectives for smart helmets as promising wearable devices. The barriers to users, challenges in the development of smart helmets, and future opportunities for health and safety applications are also discussed. In conclusion, this paper presents the current status of smart helmet technology, main issues, and prospects for future smart helmet with the objective of making the smart helmet concept a reality
    corecore